Paralyzed monkeys walk again with wireless ‘brain-spine interface’

News Hour:

 In collaboration with EPFL, Bloch is now leading a clinical feasibility study that evaluates the therapeutic potential of this spinal cord stimulation technology, without the brain implant, to improve walking in people with partial spinal cord injury affecting the lower limbs.

Swiss scientists have helped monkeys with spinal cord injuries regain control of non-functioning limbs in research which might one day lead to paralyzed people being able to walk again.

The scientists, who treated the monkeys with a neuroprosthetic interface that acted as a wireless bridge between the brain and spine, say they have started small feasibility studies in humans to trial some components.

“The link between the decoding of the brain and the stimulation of the spinal cord – to make this communication exist – is completely new,” said Jocelyne Bloch, a neurosurgeon at the Lausanne University Hospital who surgically placed the brain and spinal cord implants in the monkey experiments, reports Reuters.


“For the first time, I can imagine a completely paralyzed patient able to move their legs through this brain-spine interface.”

Gregoire Courtine, a neuroscientist at the Swiss Federal Institute of Technology (EPFL) which led the work, cautioned that there are major challenges ahead and “it may take several years before this intervention can become a therapy for humans.”

Publishing their results in the journal Nature on Wednesday, the team said the interface works by decoding brain activity linked to walking movements and relaying that to the spinal cord – below the injury – through electrodes that stimulate neural pathways and activate leg muscles.

In bypassing the injury and restoring communication between the brain and the relevant part of the spinal cord, the scientists successful treated two rhesus monkeys each with one leg paralyzed by a partial spinal cord lesion.

One of the monkeys regained some use of its paralyzed leg within the first week after injury, without training, both on a treadmill and on the ground, while the other took around two weeks to recover to the same point.

“We developed an implantable, wireless system that operates in real-time and enabled a primate to behave freely, without the constraint of tethered electronics,” said Courtine.

“We understood how to extract brain signals that encode flexion and extension movements of the leg with a mathematical algorithm. We then linked the decoded signals to the stimulation of specific hotspots in the spinal cord that induced the walking movement.”

The brain and spinal cord can adapt and recover from small injuries, but until now that ability has been far too limited to overcome severe damage.

Other attempts to repair spinal cords have focused on stem cell therapy and on combinations of electrical and chemical stimulation of the cord.


This article has been posted by a News Hour Correspondent. For queries, please contact through [email protected]
No Comments

Translate this News

Join the Facebook Group

Click here to join the Facebook group of News Hour

Popular Posts

The SARS-CoV-19 outbreak, a global threat
Samsung’s Valentine’s Day campaign ends on a happy note
The miracle of Hyperbaric Oxygen Therapy (HBOT) and its potential in Bangladesh
realme officially enters Bangladesh market
Master Chef 2.0 held at DPS STS School Dhaka
Grameenphone brings in the iPhone 11 series in Bangladesh


News of the Month

November 2016
« Oct   Dec »
Scroll Up
%d bloggers like this: